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Abstract—Data from mobile and stationary sensors1,2 will 
be vital in planetary surface exploration. The distribution 
and collection of sensor data in an ad-hoc wireless network 
presents unique challenges. Some of the conditions 
encountered in the field include: irregular terrain, mobile 
nodes, routing loops from clients associating with the wrong 
access point or repeater, network routing reconfigurations 
caused by moving repeaters, signal fade, and hardware 
failures.  These conditions present the following problems: 
data errors, out of sequence packets, duplicate packets, and 
drop out periods (when the node is not connected). To 
mitigate the effects of these impairments, robust and reliable 
software architecture tolerant of communications outages 
must be implemented. This paper describes such a robust 
and reliable software infrastructure that meets the 
challenges of a distributed ad hoc network in a difficult 
environment and presents the results of actual field 
experiments testing the principles and exploring the 
underlying technology. 
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1. INTRODUCTION 

Sensor data is an essential part of planetary surface 
exploration. Sensor data arises from status monitoring, 
system health assessment as well as scientific sampling. All 
are required for the success of the mission and sensor data is 
required for all aspects of a mission: 

− Planning requires sensor data as input to determine 
location, environment and distances. 

− Scheduling requires sensor information for calculating 
duration, time, position, and routes. 

− Operation requires sensor information to calculate 
location, progress, health status, etc. 

Sensor data steams are in real-time and are time critical. 
Parallel processing of sensor data to produce useful 
information introduces reliability issues. The two major 
causes of data loss are the burden of communications 
overhead and packet drops plus the difficulty of 
multithreaded programming. Packet loss in wireless systems 
can be caused by many factors: 
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− Congestion 

− Moving out of range of base station 

− RF interference 

− Multi-paths 

− Obstacles to line of sight 

− Routing problems 

The basic problem we are attempting to address is how to 
transmit sensor data accurately over a wireless infrastructure 
to single or multiple receivers where the networks may have 
short duration outages. In planetary exploration, 
environment could be very difficult where packet loss and 
even loss of signal, temporarily disconnected networks, 
specifically, short duration outages are the norm. 

The solution chosen by us was to use software middleware 
techniques to overcome the communication blockage 
problems.  Although this work was done for surface 
communications, it could well have application to other data 
management areas, such as orbital asset management, 
spacecraft tracking and control, and test bed data 
distributions.  Satellite constellations usually consist of 
many instruments and sensors producing multiple steams to 
multiple consumers of the data.  Satellites can experience 
periods of a high rate of data errors and periods of loss of 
signal. Like our surface data, spacecraft sensor data can 
have highly distributed users, some on different planets. 

We experimented with different schema frameworks to 
determine a method to find an optimal system for robustness 
and reliability of sensor data for surface communications. 

Ultimately, we selected Message Oriented Middleware 
(MOM) for our distributed infrastructure [3]. Message 
Oriented Middleware is a category of inter-application 
communication software that presents an asynchronous 
message-passing model as opposed to a request/response 
model. 

MOMs have the following attributes: 

− Fast 

− Reliable 

− Asynchronous 

− Guaranteed message delivery 

− Receipt notification 

− Transaction control 

As far as the client software is concerned, MOM is 
indistinguishable from real-time processing [4]. The 
primary advantage of a message-oriented communications 

protocol is the ability to store, route, and resend a message 
that needs to be delivered. 

2. TECHNICAL BACKGROUND 

Most MOM systems provide persistent storage to hold 
messages until they are successfully transferred. This means 
that it is not necessary for the sender and receiver to be 
connected when data are created. This is useful for dealing 
with faulty connections, unreliable networks, and timed 
connections (where communications is only available 
during predictable periods). It also means that if a receiver 
fails to receive a message for any reason, the sender can 
continue unaffected, since the messages will be held in the 
message store and will be transmitted when the receiver 
reconnects.  

MOM systems usually present two messaging models, but 
not all MOMs support both models:  

− Point-To-Point 

− Publish-Subscribe 

Point-to-point: 

This model [2] is based on message stores known as queues. 
A sender sends a message to a specified queue and a 
receiver receives messages from the queue. A queue can 
have multiple senders and receivers, but an individual 
message can only be delivered to one receiver. If multiple 
receivers are listening for messages on a queue, the 
underlying MOM system usually determines which receiver 
will receive the next message. If no receivers are listening 
on the queue, messages remain in the queue until a receiver 
attaches to the queue.  

Sender

Sender

Sender

Message 
Queue Receiver

Message 
Server

Sender

Sender

Sender

Message 
Queue Receiver

Message 
Server

 

Figure 1 – Point to Point Messaging 
 
Point-to-Point Messaging—the critical aspect of point-to-
point messaging is that even though there may be multiple 
senders of messages, there is only a single receiver for the 
messages. 
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End (client) systems may only send messages, only receive 
messages, or both send and receive messages. Another 
client can be sending and/or receiving messages at the same 
time. In the simplest case, one client is the sender of the 
message and the other client is the receiver of the message. 
 
There are two basic types of point-to-point messaging 
systems. The first one involves a client that directly sends a 
message to another client. The second and more common 
implementation is based on the concept of a Message 
Queue. Such a system is shown below. 

 

Publish-Subscribe: 

This model [1] is based on message stores known as topics. 
Publishers send messages to a topic. Multiple subscribers 
can retrieve messages from a topic. When multiple 
applications need to receive the same messages, Publish-
Subscribe Messaging is required. The central concept in a 
Publish-Subscribe Messaging system is the “Topic.” 
Multiple publishers may send messages to a topic, and all 
subscribers to that topic receive all the messages sent to that 
topic. This model, as shown in Figure 2, is extremely useful 
when a group of applications want to notify each other of a 
particular occurrence. 

In Publish-Subscribe Messaging, there may be multiple 
senders and multiple receivers. Point-to-point can have 
multiple senders but only one receiver. 

Overview of Message Services  

Typically a message service is implemented using a Java 
framework. A Message-Driven Bean (MDB) is an 
Enterprise Java Bean (EJB) that functions as a message 
consumer. Unlike session beans or entity beans, clients 
cannot access MDBs directly. Also, unlike session beans 
and entity beans, an MDB does not have remote or home 
interfaces. The only access a client has to an MDB is 
through a JAVA Messaging Service (JMS) destination 
(topic or queue) to which the MDB is listening. 

 An MDB must implement two interfaces:  

1. javax.jms.MessageListener—this interface defines 
the onMessage callback method. When a message 
is put on the queue/topic, the onMessage method 
of the MDB is called by the EJB container and 
passes the actual message.  

2. javax.ejb.MessageDrivenBean—this is the EJB 
interface that contains the EJB lifecycle methods: 
• ejbCreate()—called by the EJB container 

when the MDB is created. 

• ejbRemove()—called by the EJB container 
when the MDB is destroyed or removed from 
the EJB pool. 

• setMessageDrivenContext(MessageDrivenCo
ntext context)—called prior to ejbCreate and 
passed the message-driven context by the EJB 
container.  

An MDB must declare deployment information about itself 
in a deployment-descriptor file named ejb-jar-xml. The EJB 
container handles the duties of subscribing the bean to the 
topic or connecting it to the queue based on information 
placed in the deployment descriptor. The context has 
runtime information, such as the actual transaction data. 

The diagram in Figure 2 illustrates the interactions between 
a JMS message, a client, a topic, an application server, an 
EJB container, and MDB instances. 

As mentioned before, MDBs do not have remote or local 
interfaces as with session beans and entity beans. MDBs are 
not located by client classes and client classes do not 
directly invoke methods on them. All access to a MDB is 
through a JMS topic or queue that directs messages at the 
MDB through the EJB container. The EJB container 
ultimately passes the JMS message to the MDB through the 
bean’s onMessage method. All MDBs must implement the 
javax.ejb.MessageDrivenBean and 
javax.jms.MessageListener interfaces, as the example 
illustrates. 

The JMS provides a standard Java-based interface to the 
message services of a MOM of a non-JAVA based schema. 
This means that various brands of middleware can 
interoperate. 

 

Publisher

Publisher

Publisher

Topic

Subscriber

Subscriber

SubscriberMessage 
Server

Publisher

Publisher

Publisher

Topic

Subscriber

Subscriber

SubscriberMessage 
Server

 

Figure 2 - Publish Subscriber Messaging 
 

To illustrate the relationship of the classes, Figure 3 shows 
class hierarchy of the messaging services. It also shows the 
differences between the Publish-subscribe and Point-to-
point messaging in table format.  
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JMS Parent Publish-subscribe 
Domain 

Point-to-point 
Domain 

Destination Topic Queue 

Connection 
Factory 

Topic Connection 
Factory 

Queue Connection 
Factory 

Connection Topic Connection Queue Connection 

Session Topic Session Queue Session 

Message 
Producer 

Topic Publisher Queue Sender 

Message 
Consumer 

Topic Subscriber Queue Receiver, 
Queue Browser 

Figure 3 - Publisher and subscriber class hierarchy. 

3. ARCHITECTURE DESIGN 

We selected the Publish-Subscribe architecture for data 
distribution. In our project requirements, the data is to be 
distributed to multiple remote clients and the publisher may 
publish the data to a remote machine. Implementing the 
Publish-Subscribe architecture satisfies these requirements.  
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Figure 4 – GPS data distribution architecture. 

During three years of field trials our software was deployed 
as follows. 

Figure 4 shows an Astronaut carrying a backpack with our 
software running on a computer inside. A Global 
Positioning System (GPS) unit is connected to the computer 
and the data is distributed to the JMS server using the GPS 
server model. The client accesses the data by subscribing to 
the topic using the API provided by the GPS server 
developer. Biological information from sensors attached to 
the Astronaut is also distributed using this architecture as 
shown in Figure 5 below. 
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Figure 5 - Biosensor architecture. 

 
We have collaborated with a Robotic Rover team (Extra 
Vehicular Activity Robotic Assistant [ERA]) from Johnson 
Space Center in several exploration field tests (see Lessons 
Learned). The sensor data needs to be distributed to the 
ERA server so that the robot can perform commands such 
as: 

− Follow the astronaut 
− Take a picture of an area that is of interest to the 

astronaut 
− Take a picture of an astronaut 
− Make a voice note 
− Open a sample bag for a specimen  

Since the ERA team is using a Common Object Request 
Broker Architecture (CORBA) framework [5,6] for their 
distributed object model, we needed to distribute the data 
across a CORBA object by connecting our CORBA client 
with the sensor and pushing the data to the Rover object 
running on a CORBA Object Request Broker (ORB). 

The architecture of the data distribution to the ERA server is 
shown in Figure 6. The ERA implements a server 
(Executor) to accept the data and store it in local memory 
for a finite period of time. The data must be pushed at a rate 
that refreshes the data before the memory times out.  
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Figure 6 - The ERA CORBA server. 

 
The subscribed client will receive the stream of data by 
intercepting the message listener. An example of this type 
of client is the rover monitor, which can show the 
movement of the rover on a map in the real time. Figure 7 
shows the monitor screen from a pre-field test at Moffett 
Field in California. 

 

Figure 7 - Navigation monitor. 

The circle with cross is the moving cursor that shows the 
rover location by interpreting the coordinates received from 
subscribing to the GPS topic. The accuracy of the location 
was within five centimeter in the last field test.  
Reliable and Robust 

The architecture we have described has the capability of 
providing reliability and robustness during short outages. 
However, some issues are not addressed directly by our 
architecture itself. Of most concern, are longer duration 
network outages in severe environments.   

The low power output and delay sensitive protocols of 
802.11b are prone to fading, especially when used over 
multi-hop long haul point-to-point circuits. Additional 
problems are caused when equipment moves out of the line 
of sight or encounters routing difficulties as equipment 
moves and long duration outages occur. 

The first software challenge is to recognize that a 
communications outage is occurring. Fortunately, both 
JAVA and CORBA provide this functionality.  JAVA 
automatically sets a software exception that can be detected 
and CORBA has a ping function that can be used to 
explicitly insure the network is connected before do the 
actually connection. 

 

Figure 8 – Astronaut and robotic assistant at the MDRS in 
Utah. 

We have the tested our methodology during simulation tests 
at the Mars Desert Research Station (MDRS) in Utah during 
the spring of each year from 2002-05. These “Mobile 
Agent” expeditions tested interactions between astronauts 
and robotic assistants. They were a collaborative effort 
between several NASA centers and university investigators. 
We used 802.11b to communicate between astronaut, robot 
and the base station.  Some of these links were over several 
kilometers, which required installation of repeaters in 
temporary locations that subjected them to wind and rain. A 
satellite link was used to send the data via the NASA 
Research and Engineering Network (NREN) from base 
camp to multiple researchers at their home institutions. 

As the astronauts and robots move, they come in and out of 
wireless signal coverage. Under such conditions, with short-
term outages the norm, data distribution becomes unreliable. 
Connections can be lost either between the astronaut and the 
JMS server, or from the ERA robot to the JMS server (or 
both). Any of these data interruptions will keep the sensor 
data from reaching the proper destination.  

A software workaround was devised to mitigate this 
impairment. A retry loop was established which continued 
to test the path until it has recovered. To prevent the retries 
from impacting data collection from the sensor, tying up 
CPU usage, or other resources, a counter was implemented 
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to wait a period of time (in seconds) before the connection 
was retried. The data was stored until connectivity was re-
established. 

The logic path used for implementing timeout loops in the 
subscriber model is as follows: 

In the processing of data loop 
If (reconnectCounter==0) 
 DoReconnect(); 
 Publish(); 
Else  
 ReconnectCounter--; 
Endif 
 
When (ConnectionException) 
 SetReconnectCounter; 
 End loop 

 
Another important issue was when the SerialConnection 
class was used to acquire data from the COM port; it should 
not be interrupted by other tasks, as the data flow received 
was a continuous real-time stream. Separate threads were 
implemented to prevent interruption of data distribution and 
the SerialConnection class dedicated to acquiring and 
storing the data in memory for further processing.   

4. FIELD TESTS AND LESSONS LEARNED 

Field tests took place at MDRS, in an isolated area in Utah. 
 A satellite link was connected to the high-speed NREN 
backbone through Glenn Research Center (GRC) in Ohio. 
Astronauts (fully suited) were paired with robotic assistants. 
They communicated with each other over wireless links and 
the robot responded to voice commands from the astronaut. 
The robot contained a mobile wireless local area network 
(WLAN) repeater.  The activities were monitored from a 
base camp several kilometers away. Additional repeaters 
were situated on all terrain vehicles (ATV) and nearby 
hilltops.  

 

Figure 9 – Mobile Agents communication topology. 

Experiences from the 2003 Mobile Agents field season 
included an attempt at Ames Research Center (ARC) to 
integrate the equipment (robots, wireless, etc.) and software 
from the many contributing groups at ARC and Johnson 
Space Center before deploying to the field, but lack of time 
and travel resources forced a very superficial integration 
effort.  Various groups were also in development stage until 
just before the deployment. It was almost expected that we 
would experience problems and would have to redesign in 
the field.  

The first week of the two-week period was marked by 
problems related to the substantial packet delay and 
frequent connectivity drops.  The software responsible for 
GPS location service failed to correctly establish 
coordinates when the GPS real-time data from the 
equipment in the backpack was delayed. This made testing 
astronaut-robot-operations center voice recognition and 
command processing impossible. Additionally, overheating 
problems with the backpack computers and routing 
problems on our multi-hop wireless system were 
experienced.  

Several steps to mitigate these problems were attempted. A 
Network Time Protocol (NTP [RFC 1305]) Timeserver was 
implemented to timestamp all GPS and biosensor data. This 
made it possible to correctly correlate the location of the 
astronaut or the robot with a time series. Sensor message 
processing was moved to a computer that had less network 
traffic and less extraneous processing. Also, publish-
subscribe middleware was fully implemented. 

These measures and further tuning of the wireless 
infrastructure to fix some routing problems, and adding an 
additional fan to the backpack led to several successful 
simulations. 
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Experiences during the 2004 field season were more 
positive, even with some rather severe weather and dust 
storms. Before deployment the astronaut backpack was 
redesigned, adding better ventilation to accommodate an 
updated rugged laptop computer, which had more memory 
and a mobile Pentium processor with a wider operating 
temperature range. 

The WLAN complexity (mobile access points on ATV and 
mobile robots with repeater sites on far away hills) was 
simplified and multi-pathing and channel overlap were 
reduced. Routing between the elements was rationalized to 
prevent loops, which led to higher bandwidth and better 
throughput.  

The distributed sensor architecture was tested on by moving 
the JMS server to various computers on the system. All 
worked as designed, although response was still slow but 
tolerable.  

The 2005 season built on the successes of 2004. The 
software was optimized and the client API redesigned. The 
client is the “subscriber” to the sensor data message server. 
One improvement was to have the software “sleep” when 
no messages are in the queues and awake when they are 
available.  This cut the CPU and memory requirements 
substantially.  The sensor data have duty cycles of less than 
10 hertz, thus leaving substantial periods for other software 
tasks.  Improvements were also made in the voice loop 
software, the mobile agent software, and the voice 
recognition software.  These upgrades produced improved 
performance and seamless transition in and out of wireless 
coverage. 

5. CONCLUSIONS 

The field tests and experiments show that the distributed 
components model utilizing the JMS architecture is very 
suitable for real time sensor data distribution. It produces 
reliable and robust data streams to multiple clients in real-
time. The publish-subscriber model is very scalable, even 
for processing data from many sensors. For publishing data 
from multiple sensors, message beans and topics can be 
easily created for each occurrence of a sensor.  

Longer duration network outages, which are common in the 
field, can be easily mitigated by simple software 
modifications.   

These techniques have relevance to situations where 
multiple assets are distributed on the ground and in orbit, 
and sensor and other data are to be distributed to multiple 
consumers locally or on Earth.  
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